Chromatic Number for a Generalization of Cartesian Product Graphs

نویسندگان

  • Daniel Král
  • Douglas B. West
چکیده

Let G be a class of graphs. A d-fold grid over G is a graph obtained from a d-dimensional rectangular grid of vertices by placing a graph from G on each of the lines parallel to one of the axes. Thus each vertex belongs to d of these subgraphs. The class of d-fold grids over G is denoted by Gd. Let f(G; d) = maxG∈Gd χ(G). If each graph in G is k-colorable, then f(G; d) ≤ kd. We show that this bound is best possible by proving that f(G; d) = kd when G is the class of all k-colorable graphs. We also show that f(G; d) ≥ ⌊√

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The reliability Wiener number of cartesian product graphs

Reliability Wiener number is a modification of the original Wiener number in which probabilities are assigned to edges yielding a natural model in which there are some (or all) bonds in the molecule that are not static. Various probabilities naturally allow modelling different types of chemical bonds because chemical bonds are of different types and it is well-known that under certain condition...

متن کامل

The Game Chromatic Number of Some Families of Cartesian Product Graphs

We find exact values for the game chromatic number of the Cartesian product graphs Sm¤Pn, Sm¤Cn, P2¤Wn, and P2¤Km,n. This extends previous results of Bartnicki et al. on the game chromatic number of Cartesian product graphs.

متن کامل

Equitable Colorings of Cartesian Product Graphs of Wheels with Complete Bipartite Graphs

By the sorting method of vertices, the equitable chromatic number and the equitable chromatic threshold of the Cartesian products of wheels with bipartite graphs are obtained. Key–Words: Cartesian product, Equitable coloring, Equitable chromatic number, Equitable chromatic threshold

متن کامل

Game Chromatic Number of Cartesian Product Graphs

The game chromatic number χg is considered for the Cartesian product G 2 H of two graphs G and H. We determine exact values of χg(G2H) when G and H belong to certain classes of graphs, and show that, in general, the game chromatic number χg(G2H) is not bounded from above by a function of game chromatic numbers of graphs G and H. An analogous result is proved for the game coloring number colg(G2...

متن کامل

Game coloring the Cartesian product of graphs

This article proves the following result: Let G and G′ be graphs of orders n and n′, respectively. Let G∗ be obtained from G by adding to each vertex a set of n′ degree 1 neighbors. If G∗ has game coloring number m and G′ has acyclic chromatic number k, then the Cartesian product G G′ has game chromatic number at most k(k+m − 1). As a consequence, the Cartesian product of two forests has game c...

متن کامل

On the super domination number of graphs

The open neighborhood of a vertex $v$ of a graph $G$ is the set $N(v)$ consisting of all vertices adjacent to $v$ in $G$. For $Dsubseteq V(G)$, we define $overline{D}=V(G)setminus D$. A set $Dsubseteq V(G)$ is called a super dominating set of $G$ if for every vertex $uin overline{D}$, there exists $vin D$ such that $N(v)cap overline{D}={u}$. The super domination number of $G$ is the minimum car...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2009